Use of Atmospheric Modeling for Megacity Urban Planning: The Case of Temperature Positive Anomalies in the Rio de Janeiro Metropolitan Area, Brazil

DATE PUBLISHED
December 15, 2017
SECTION
Articles

Abstract

This study aims at the evaluation of the ability of the atmospheric mesoscale model of Weather Research and Forecasting (WRF)  to predict heat wave episodes in the RMRJ, Brazil. The results obtained by using the WRF were compared with observed data of air temperature at 2 meters, showing a slight tendency of the simulated results to underestimate the observed temperatures. On the other hand, the results of the simulation adequately reproduced the daily temperature cycle. In the period of analysis, the observed data indicated values of maximum temperatures about 5 ° C above the climatological means of each sub-region of the RMRJ, which characterizes episodes of a heat wave. The synoptic analysis indicated that the temperature anomalies occurred as a consequence of the meteorological configuration in the synoptic scale of the ASAS in low levels and a high of geopotential in average levels of the troposphere. The study demonstrates that the meteorological characterization together with the computational modeling of the atmosphere is a potential strategy for urban planning and public management of urban areas, capable of detecting and predicting the area’s most susceptible to the occurrence of positive temperature anomalies in Megacities.

Keywords

Heat waves; Atmospheric modeling; Urban planning; Megacities; Rio de Janeiro; WRF; temperature positive anomalies .

References

Angel, S., Parent, J., Civco, D.L., Blei, A., and Potere, D. (2011). “The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050”. Prog. Plan. 75, 53–107.

Baklanov, A., Molina, L.T., and Gauss, M. (2016). “Megacities, air quality and climate”. Atmospheric Environment 126, 235 - 249.

Bitencourt, D.P., Fuentes, M.V., Maia, P.A., and Amorim, F.T. (2016). “Frequency, Duration, Spatial Coverage, and Intensity of Heat Waves in Brazil”. Revista Brasileira de Meteorologia, 31(4), 506-517.

Cassou, C., Terray, L., and Phillips, A.S. (2005). “Tropical Atlantic influence on European heat waves”. Journal of climate, 18(15), 2805-2811.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., and Valentini, R. (2005). “Europe-wide reduction in the primary productivity caused by the heat and drought in 2003”. Nature. 437, 529–533.

Chagas, G.M. (2015). “O processo de reestruturação territorial-produtiva no Extremo Oeste Metropolitano Fluminense: O caso de Itaguaí”. Monografia (Graduação em Geografia), Departamento de Geociências, UFRRJ – Universidade Federal Rural do Rio de Janeiro.

Chemel, C., and Shoki, R.S. (2012). “Response of London’s Urban Heat Island to a Marine Air Intrusion in an Easterly Wind Regime”. Boundary-Layer Meteorol, 144: 65-81.

Chen, F. and Dudhia, J. (2001a). “Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity”. Monthly Weather Review, 129: 569-585.

Chen, F., and Dudhia, J. (2001b). “Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation”. Monthly Weather Review, 129(4), 587-604.

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C.S.B., Grossman-Clarke, S., Loridan, T., Manning, K.W., Martilli, A., Miao, S., Sailor, D., Salamanca, F.P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A.A., and Zhang, C. (2011). “The integrated WRF/urban modeling system: development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31, (2) 273-288.

Chen, F., Yang, X.C., and Zhu, W.Q. (2014). “WRF simulations of urban heat island under hot weather synoptic conditions: the case study of Hangzhou City, China”. Atmos. Res. 138, 364–377.

Cleugh, H., and Grimmond, S. (2012). “Urban climates and global climate change”. In: Henderson-Sellers, A., McGuffie, Kendal (Eds.), Chapter 3 of “The Future of the World's Climate”. Elsevier B.V., ISBN 978-0-12-386917-3.

Conti, S., Meli, P., Minelli, G., Solimini, R., Toccaceli, V., Vichi, M., Beltrano, C., and Perini. L. (2005). “Epidemiologic study of mortality during the Summer 2003 heat wave in Italy”. Environmental Research, v. 98, n. 3, p. 390-399.

CPTEC/INPE (Centro de Previsão de Tempo e Estudos Climáticos/ Instituto Nacional de Pesquisas Espaciais). (2014). Climanálise: Boletim de Monitoramento e Análise Climática. V.29, n.1.

Dandou, A., Tombrou, M., and Soulakellis, N. (2009). “The influence of the city of Athens on the evolution of the sea-breeze front”. Boundary-Layer Meteorology 131, 35-51.

Dee, D.P., and Uppala, S. (2009). “Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis”. Quarterly Journal of the Royal Meteorological Society, 135(644), 1830-1841.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., H+¦lm, E.V., Isaksen, L., K+Ñllberg, P., K+Âhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.N., and Vitart, F. (2011). “The ERA-Interim reanalysis: configuration and performance of the data assimilation system”. Quarterly Journal of the Royal Meteorological Society, 137, (656) 553-597.

EEA (European Environment Agency). (2011). “The application of models under the European Union's Air Quality Directive: A technical reference guide”. EEA Technical report No 10/2011. ISSN 1725-2237.

Fink, A.H., Brücher, T., Krüger, A., Leckebusch, G.C., Pinto, J.G., and Ulbrich, U. (2004). “The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts”. Weather, 59 (8), 209-216.

Fischer, E.M., Seneviratne, S.I., Lüthi, D., and Schär, C. (2007). “Contribution of land‐atmosphere coupling to recent European summer heat waves”. Geophysical Research Letters, 34(6).

Gasparrini, A., and Armstrong, B. (2011). “The impact of heat waves on mortality”. Epidemiology, v. 22, n. 1, p. 68-73.

Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., and Briggs, J.M. (2008). “Global change and the ecology of cities”. Science, 319 (5864), 756-760.

Hess, J.J., Saha, S., and Luber, G. (2014). “Summertime acute heat illness in U.S. emergency departments from 2006 through 2010: analysis of a nationally representative sample”. Environmental Health Perspectives, v. 122, n. 11, p. 1209-1215.

Hoshiko, S., English, P., Smith, D., and Trent, R. (2010). “A simple method for estimating excess mortality due to heat waves, as applied to the 2006 California heat wave”. International Journal of Public Health, v. 55, n. 2, p. 133-137.

Huang, W., Kan, H., and Kovats, S. (2010). The impact of the 2003 heat wave on mortality in Shanghai, China. Science of the Total Environment, v. 408, n. 11, p. 2418–2420.

IBGE (Instituto Brasileiro de Geografia e Estatística). (2016). Estimativas de população. Available in

http://www.ibge.gov.br/home/estatistica/populacao/estimativa2016/.

Jongsik, H., and Kim, H. (2012). “Changes in the association between summer temperature and mortality in Seoul, South Korea”. International Journal of Biometeorology, v. 57, n. 4, p. 535-544.

Kunkel, K.E., Changnon, S.A., Reinke, B.C., and Arritt, R.W. (1996). “The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors”. Bulletin of the American Meteorological Society, 77(7), 1507-1518.

Kusaka, H., Chen, F., Tewari, M., Dudhia, J., Gill, D.O., Duda, M.G., Wang, W., and Miya, Y. (2012). “Numerical Simulation of Urban Heat Island Effect by the WRF Model with 4-km Grid Increment: An Inter-Comparison Study between the Urban Canopy Model and Slab Model”. Journal of the Meteorological Society of Japan, 90B: 33-45.

Li, D., and Bou-Zeid, E. (2013). “Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts”. J. Appl. Meteorol. Climatol. 52, 2051–2064.

Lim, Y.H., Kim, H., and Hong, Y.C. (2012). “Variation in mortality of ischemic and hemorrhagic strokes in relation to high temperature”. International Journal of Biometeorology, v. 57, n. 1, p. 145-153.

Lin, C. Y., Chen, F., Huang, J. C., Chen, W. C., Liou, Y. A., Chen, W. N., and Liu, S.C. (2008). “Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan”. Atmospheric Environment, 42(22), 5635-5649.

Meehl, G.A., and Tebaldi, C. (2004). “More intense, more frequent, and longer lasting heat waves in the 21st century”. Science, 305 (5686), 994-997.

Miao, S., Chen, F., LeMone, M., Tewari, M., Li, Q., and Wang, Y. (2009). “An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing”. J. Appl. Meteorol. Climatol., 48 (3), pp. 484–501.

Monteiro, A., Carvalho, V., Oliveira, T., and Souza, C. (2012). “Excess mortality and morbidity during the July 2006 heat wave in Porto, Portugal”. International Journal of Biometeorology, v. 57, n. 1, p. 155-167.

Moraes, N.O., Marton, E., and Pimentel, L.C.G. (2014). “Análise do Desempenho dos Modelos MM5 e WRF na Simulação da Temperatura do Ar em Superfície na RMRJ”. Anuário do Instituto de Geociências, 37(2), 161-168.

Ostro, B.D., Roth, L.A., Green, R.S., and Basu, R. (2009). “Estimating the mortality effect of the July 2006 California heat wave”. Environmental Research, v. 109, n. 5, p. 614-619.

Paiva, L.M.S., Bodstein, G.C.R., and Pimentel, L.C.G. (2014). “Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems”. Geoscientific Model Development, 7(4), 1641-1659.

Palecki, M.A., and Groisman, P.Y. (2011). “Observing climate at high elevations using United States Climate Reference Network approaches”. Journal of Hydrometeorology, 12(5), 1137-1143.

Quattrochi, D.A., and Luvall, J.C. (1997). “Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect”. Int. J. Remote Sens. 18, 287–304.

Rizwan, A.M., Dennis, Y.C.L., and Liu, C. (2008). “A review on the generation, determination and mitigation of Urban Heat Island”. J. Environ. Sci. 20, 120–128.

Salamanca, F., Martilli, A., and Yagüe, C. (2012). “A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies”. International Journal of Climatology, 32: 2372–2386.

Schubert S.D., Wang H., and Suarez M.J. (2011). “Warm season subseasonal variability and climate extremes in the Northern Hemisphere: the role of stationary Rossby waves”. J. Clim. 24(18): 4773–4792.

Semenza, J.C., Rubin, C.H., Falter, K.H., Selanikio, J.D., Flanders, W.D., Howe, H.L., and Wilhelm, J.L. (1996). “Heat-Related deaths during the July 1995 heat wave in Chicago”. The New England Journal of Medicine, v. 335, n. 2, p. 84-90.

Seto, K.C., Güneralp, B., and Hutyra, L.R. (2012). “Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools”. Proc. Natl. Acad. Sci. 109, 16083–16088.

Shafran, P.C., Seaman, N.L., and Gayno, G.A. (2000). “Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study”. J. Appl. Meteor., 39, 412–426.

Simmons, A., Uppala. S., Dee, D., and Kobayashi, S. (2006). “ERA-Interim: New ECMWF reanalysis products from 1989 onwards”. ECMWF Newsletter, 110: 25-35

Skamarock, W.C., Klemp J.B., Dudhia, J., Gill, D.O., Barker. D.M., Duda, M.G., Huang, X.Y., Wang, W., and Powers, J.G. (2008). “A Description of the Advanced Research WRF Version 3: NCAR Technical Note TN–475+ STR”. National Center for Atmospheric Research Boulder, Colorado, USA.

Stéfanon, M., Drobinski, P., D’Andrea, F., Lebeaupin-Brossier, C., and Bastin, S. (2014). “Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe”. Climate dynamics, 42(5-6), 1309-1324.

Tasian, G.E., Pulido, J.E., Gasparrini, A., Saigal, C.S., Horton, B.P., Landis, J.R., Madison, R., and Keren, R. (2014). “Daily mean temperature and clinical kidney stone presentation in five U.S. metropolitan areas: A time-series analysis”. Environmental Health Perspectives, v. 122, n. 10, p. 1081-1087.

United Nations. (2014). Department of Economic and Social Affairs, Population Division. “World urbanization prospects: The 2014 revision”. New York: NY, United Nations 2014.

Vautard, R., Honore, C., Beekmann, M., & Rouil, L. (2005). “Simulation of ozone during the August 2003 heat wave and emission control scenarios”. Atmospheric Environment, 39(16), 2957-2967.

Xoplaki, E., Gonzalez-Rouco, J.F., Luterbacher, J., Wanner, H. (2003). Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn. 20: 723–739.

Author Details

Nilton Oliveira Moraes

  • Doctoral Fellow, Mechanical Engineering Program (PEM), Alberto Luiz Coimbra Institute of Post Graduate Studies and Research (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
  • Google Scholar
  • RAJAR Journal

Luiz Claudio Gomes Pimentel

  • Associate Professor, Dept. of Meteorology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
  • Google Scholar
  • RAJAR Journal

Fernando Pereira Duda

  • Associate Professor, Mechanical Engineering Program (PEM), Alberto Luiz Coimbra Institute of Post Graduate Studies and Research (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
  • Google Scholar
  • RAJAR Journal

Corbiniano Silva

  • Postdoctoral Fellow, Faculty of Geology, Center for Technology and Sciences, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
  • Google Scholar
  • RAJAR Journal

William Cossich Marcial de Farias

  • Substitute Professor, Dept. of Meteorology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
  • Google Scholar
  • RAJAR Journal

Edilson Marton

  • Associate Professor, Dept. of Meteorology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
  • Google Scholar
  • RAJAR Journal